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AN ERROR ESTIMATE 
OF THE LEAST SQUARES FINITE ELEMENT METHOD 
FOR THE STOKES PROBLEM IN THREE DIMENSIONS 

CHING LUNG CHANG 

ABSTRACT. In this paper we are concerned with the Stokes problem in three di- 
mensions (see recent works of the author and B. N. Jiang for the two-dimensional 
case). It is a linear system of four PDEs with velocity u and pressure p as 
unknowns. With the additional variable cl = curl u, the second-order prob- 
lem is reduced to a first-order system. Considering the compatibility condition 
div wi = 0, we have a system with eight first-order equations and seven un- 
knowns. A least squares method is applied to this extended system, and also 
to the corresponding boundary conditions. The analysis based on works of Ag- 
mon, Douglis, and Nirenberg; Wendland; Zienkiewicz, Owen, and Niles; etc. 
shows that this method is stable in the h-version. For instance, if we choose 
continuous piecewise polynomials to approximate u, wi, and p, this method 
achieves optimal rates of convergence in the H1-norms. 

INTRODUCTION 

Let Q be an open bounded and connected subset of R3 with a smooth 
boundary F. Let f E [L2(Q)]3 be a given function representing the body 
force. The Stokes problem can be posed as 

(-vAuu+gradp=f inQ, 

(1.1) < divu = 0 in Q, 

u = 0 on F, 

where u, p with (p, 1) = 0, and v are respectively velocity, pressure, and 
kinematic viscosity (constant), all of which are assumed to be nondimensional- 
ized. 

Over the past two decades many engineers and mathematicians have studied 
the above problem. The mixed Galerkin method solves this problem success- 
fully. In most cases the elements are required to satisfy a saddle point condition 
[4, 5, 8, 9, 22], which is not necessary for our method. 
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Introducing w = curl u we can transform (1.1) into the first-order system 

v cur w + gradp 0 
_ F ~-div 1to 0 

(1.2) LU= = in Q 
[ vcurl u- vw 0 

-div u 1 0 

and the boundary condition 

-1 0 0 0 0 0 O- 

RU_ 
0 1 0 0 0 0 O 

U =0 on r, 0 0 1 0 0 0 01 
O 0 0 n1 n2 n3 0J 

where U = [u, co, p]t. The above system has been weighted, which is required 
by the analysis in the following sections. The relation divco = 0 is the com- 
patibility condition; without it, the numerical scheme may not be convergent. 

The boundary condition u = 0 on F implies that the tangential derivatives 
of ui vanish, or Vui x n = 0 for i = 1, 2, 3 and 

U 9U3 aU2 n +0u1 0U3 _ _aU2 au, _ 

w U = - O))n 9 x )n 9 y)n 

(0U3 aU3 (___ aU2 au (u au1 , 
- t nl1-Oxf n2) + uXn3 - - n + n2 - n3 

ay ax (9x az az ay3, 

=0. 

The least squares method relaxes the boundary conditions and the exact diver- 
gence-free condition, so that the elements require less restriction. For example, 
if all of the u, w, and p are allowed to be approximated by piecewise linear 
functions in H1 (Q), we will show that the method achieves an optimal rate of 
convergence. 

Weighted least squares methods were used by Bramble, Nitsche, Schatz, Fix, 
Gunzburger, Nicolaides, Oden, Carey, Zienkiewicz, and many others [7, 15] 
in [2, 12]. In this paper we are going to apply the theory of Agmon-Douglis- 
Nirenberg-type first-order linear systems to the weighted least squares methods. 
The work of Aziz, Kellogg, Stephens, and Wendland [2, 23] gave a general 
theory for this method. Jiang, Povinelli, and Chang [18-19] have successfully 
transformed the Stokes problem into a first-order system in a two-dimensional 
region an.d then treated it by a least squares method. 

In this paper we will present not only the numerical least squares scheme, 
but also derive error estimates in the three-dimensional case. 

2. NOTATION AND FORMULATION OF THE PROBLEM 

Throughout this paper, we will employ standard notation for Sobolev spaces 
and their associated norms [14, 22]. We let Htm(Q) denote the Sobolev space 
of functions having square integrable derivatives of order up to m over Q, 

(2.1) Hm(Q) = {v E L2(Q); a'V E L2(Q) for lal < m}, 
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where a = (a I a2a3), aaV = aOaIV/Oxaaaya2OZa3, lal = al + a2 + a3> We 
define the inner product and the norm in Hm(Q) as 

(2.2) (u, V)m = E / aaV 
1sat<mQ 

and 
|Uf12f = (u, U)m. 

The space Hom(2) is the closure of 9 (Q) for the norm ff ffIl, where 9(Q) is 
the linear space of functions infinitely differentiable and with compact support 
on Q2. We denote by H-m( i?) the dual space of Hom(2) normed by 

(2.3) flull-m = sup I(', ) over v E Ho (2) and v - 0. 

The trace operator yo: HI(Q) -+ L2(r) is a bounded linear operator agreeing 
with the restriction operator u 4 u/F for continuous functions on Q. The 
kernel of yo is Ho' (Q), and the image is denoted by HI/2(r), which is also a 
Hilbert space; we define its norm by 

(2.4) 1ju111/2,r = {inf llvlli; v E H1(Q) and yoU = u on F}. 

The trace inequality shows that there exists c > 0 independent of v such that 

(2.5) IfYOv1 l2,r < clfvffi for any v E Hl(Q). 
We define the function space 

(2.6) V = {v E [H1(Q)f]}. 

Following the work of Bramble and Scott [6], we will use a finite-dimensional 
subspace VJh E V of functions to approximate our solutions. The parameter h, 
which represents a mesh spacing, is used to indicate the approximation property 
of Vh . We say that V;h approximates optimally with respect to r if for every 
v E V n [Hr+l (Q)]7 there exists vh E Vrh such that 

(2.7) hf|v - vh||1 + fv-Ivh hlo < Chr+ 1||Vh|r+I, 

where the positive constant C is independent of v and h. 
We then define the least squares quadratic functional 

(2.8) J(v) = Lv ( Lv - -(L) ?h-Rv.- Rv forV E V. 

If U minimizes J(v) over v E V, it is easy to see that 

(2.9) jLU.Lv+h1jRU.Rv=J()Lv foranyVEV, 

so a solution of (1.2) is also a solution of (2.9), and a sufficiently smooth solution 
of (2.9) is also a solution of (1.2). 

A finite element approximation to the solution of (1.2) or (2.9) is defined as 
a solution of the problem 

(2.10) MinJ(vh) overVh E Vrh 
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Similarly to (2.9), the solution Uh of (2.10) satisfies the corresponding finite 
algebraic equations 

(2.11) jLUh Lvh + h1 RUh Rvh= () Lvh for any vh E Vh 

Once a basis for VJh is chosen, (2.11) becomes a symmetric linear algebraic 
system. Moreover, in ?4 we will show that this algebraic system is also positive 
definite. 

3. THE A PRIORI ESTIMATES 

In this section we consider an auxiliary elliptic system obtained from the sys- 
tem (1.2) by adding another unknown. The a priori inequality associated with 
this "enriched" system is important in the derivation of our error estimate. The 
"enriched" set of unknowns is { = [u, k, w, p]t, where k is a new variable 
that plays a role similar to that of a slack variable in linear programming. The 
enriched differential system is defined in terms of the operator Le by 

[ v curl w + gradp 

(3.1) Le= vcurlu+gradkiv1 =F inQ, 
L -divu I 

while the enriched boundary conditions are given in terms of the boundary 
operator Re by 

-1 0 0 0 0 0 0 O- 

0 0 1 0 0 0 0 0 

(3.2) 0 0 0 0 n, n2 n3 0] 
Ul 

U2 =0 on]F. 
U3 

LnKol + n2CO2 + n3OJ3 

If fu p = fu k = 0 and the compatibility conditions on the data, f4 f= 

fnf8 = 0, are satisfied, the boundary value problem defined by (3.1), (3.2) 
is well posed, and the a priori inequality associated with this problem gives 
rise to our desired inequality for the Stokes problem. Taking the div of both 
sides of equations 5 through 7 in (3.1) yields Ak = 0; evaluating the normal 
component of the vector consisting of the same three rows of LeZ/ anywhere 
on the boundary yields O k = 0, 1 and together with fQ k = 0 this finally gives 
k -. Equation (3.1) can thus be rewritten as 

(3.3) LeZI = A'Gx + Bky + CVZ, + DZ/ = F,5 

where A, B, C, and D are 8 x 8 constant matrices: 

A A1 A21 
A A A4] 

lVk * n = v(wo - curl u) * n = v(o *n- nZ=1 [Vui x n],) = v(O - 0) = 0, since a) * n = 0 and 
u = O on r'. 

1 
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and the same for B, C, and D, with 
- 0 0 0 1 

A2=A3= L0 
0 -v 0 

Al=A4=[0]4x4 0 v 0 0) 
-1 0 0 01 

- 
O O v O- 

B2 =B3 = 
0 
? 

0 
02 ' B, = B4 = [0]4x4, _V 0 0 0 

0 -V 0 01 
O-v 

O O 

0 

C2 Q 0 0 o 1? C = C4 =[0]4x4, 
c O i1 0 

and 

= [ 0" 0 , 

D4= 
0 
? -I 0 01 DI =D2=D3 =[0]4x4. 

The operator Le in (3.1) has the matrix form 

a a a 
Le = [lij(a)] = A- +B- +C + D. 

ax Dy Dz 

We also define the space for the enriched variables as 

(3.4) Ve = {V E [H1(Q)]8}. 

Following the procedure in [1], we check the polynomials lij(9). We find 
that there exist integer weights si = 0, tj = 1, i, j = 1, 2, ... 8, such that 

deg[lij(e))] < si + t for i, j = 1,2, ..., 8, 

where e = [x y z]t is the spacial variable. We define l' to be the polynomial 
with the terms in lij which are precisely of the order si + t1, 

(9) _det[l, (E9)] = det(xA + yB + zC) = v4(x2 + y2 + z2)4 

$0 for real E) = [x y z]t$ : 0. 

By the theory of Agmon, Douglis, and Nirenberg [ 1], the operator Le defined 
in (3.1) is an elliptic system and is also uniformly elliptic by the definition given 
in [20]. In this paper, since we discuss the problem with constant coefficients, 
the position variable P is dropped. We state the supplementary condition, 
which is fulfilled for our problem, since we have three independent variables. 

Supplementary Condition. Y(8) is of even degree 2m. For any pair of linearly 
independent real vectors e and e9', the polynomial Y(E9+TE)') in the complex 
variable T has exactly m roots with positive imaginary part. 

Next, we check the boundary condition to see whether it satisfies the com- 
plementing condition. 

The operator Re in (3.2) involves a constant matrix of order 4 x 8. The 
order of the boundary operator Re depends on two systems of integer weights, 
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in this case the system tj, j = 1, 2, ... , 8, already attached to the dependent 
variables, and a new system rh, h = 1, 2, 3, 4, of which rh pertains to the 
hth condition in (3.2). In this paper we simply take rh = - 1, h = 1, ..., 4. 
Let Rhj (e) consist of the terms in Rh (e) which are precisely of the order 
rh + tj . There is no difference between Rhj and R'1 in our problem. 

At any point P on a regular portion of F, let n denote the outer normal 
at P, and e :$ 0 any tangent to r. Denote by T+(0), h = 1, 2, 3, 4, 
the four roots in T with positive imaginary part of the characteristic equation 
2(e + Tn) = 0. The existence of these roots is assured by the Supplementary 

Condition. Set 
4 

(3.5) M+(P, e, ET) = J7(T r- T(P, E)). 
h=1 

In our case, .F(E + Tn)= 0 implies 

((01 + Tnnl)2 + (02 + Tn2)2 + (03 + Tn3)2)4 = 0, 

or (T2 + 1)4 = 0, So M+(P, e, i) = (i - i)4. Let (Lik(e)) denote the matrix 
adjoint to (1j1j(8)), 

o 0 0 0 0 -vz vy X- 
o 0 0 0 vz 0 -vx y 
O 0 0 0 -vy vx 0 Z 

(Il'(8)) 0 0 0 0 -x -y -z 0 
o -liz vy x 0 0 0 0 

vz 0 -lix y 0 0 0 0 
-vy lx 0 z 0 0 0 0 
-x -y -z 0 0 0 0 o 

After tedious elementary operations, the adjoint matrix to (lb'j()) is seen to 
be 
(3.6) 

o o 0 0 0 -z y vx- 
O O 0 0 z 0 -x vy 
O O 0 0 -y x 0 liz 

(L k V3 (2 +2 +z2 o o 0 0 -lix -vy -liz 0 
(Lik(e))=li3(x2+y2+z2)3 0 -z y liX 0 0 0 0 

z 0 -x vy 0 0 0 0 
-y x 0 vlz 0 0 0 0 

-lX -vy -IJZ 0 0 0 0 0 

The above-mentioned criterion for the boundary problem (3.1), (3.2) to be 
coercive is that the following algebraic condition be satisfied. 

Complementing Boundary Condition. For any P E F and any real, nonzero 
vector e tangent to F at P, regard M+ (P, 3, i) and the elements of the 
matrix 

N 

(3.7) ZRh;(P, E + Tn)Lik (P , + Tn) 
j=1 
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as polynomials in the indeterminate T. The rows of the latter matrix are re- 
quired to be linearly independent modulo M+(P, E), T), i.e., 

m 
(3.8) E ChRjLik = 0 (ModM+) 

h=i 

only if the constants Ch are all zero. 

Without loss of generality, let the tangent vector 0 = (06, 02, 03) and the 
normal vector n = (nI, n2, n3) be unit vectors. In our case, N = 8. From 
(3.2) and (3.6) we find that the matrix defined in (3.7) for our problem is 

o o 0 0 0 -M3 M2 vm1 

v3(T2+ 1)3 o o 0 0 M3 0 -ml Vm2 
[ O O O -M2 ml 0 Vm3, 

03n2 - 02n3 01n3 - 03n, 02n, - Oin2 VT 0 0 0 0 J 

where 
MI= 61 + Tn1, 

m2 = 02 + Tn2, 

M3 = 03 + Tn3. 
Assume the condition (3.8) is fulfilled. In terms of the matrix entries, the 
condition implies that there are constants DI, D2, ... , D8 such that 

C4V3(T2 + 1)3(03n2 - 02n3) = DiM+(T)), 

C4V3(T2 + 1)3(01n3 - 03nj) = D2M+(T), 

C4V3(T2 + 1)3(02n, - 61n2)= D3M+(T), 
C4v4(T2 + 1 )3T = D4M+-(), 

v3 (T2 + 1)3(C2m3 - C3m2) = D5M+(T), 

v3(r2 + 1)3(C3mT - CIm3) = D6M+(T), 

v3 (T2 + 1)3(CIm2 - C2mI) = D7M+(T), 

v4(T2 + 1)3(CIm, + C2m2 + C3m3) = D8M+(T). 

The roots of the polynomial M+(T) have positive imaginary parts with multi- 
plicity 4. On the left-hand sides we have the factor of positive imaginary parts 
with multiplicity 3 only, hence DI, D2, ..., = 0, and C4 = 0. From the 
last four equations above we have 

(C1 , C2, C3)T X (mI , M2, m3)T = 0, 

(C1, C2, C3)T (mI, M2, m3)T = 0. 

Since (mI, M2, m3)T 0 0, we have Cl = C2 = C3 = 0, and the Complement- 
ing Boundary Condition is indeed satisfied. 

By the work in [1], we can now state 

Theorem 1. For 1 > 0 there is a constant C > 0 such that 

(3.9) 11111+1 < C(IILe11i1 + IIRe{I11+ I + II/IIo). 

It can be shown that the boundary value problem associated with (3.1), (3.2) 
has a unique solution. Therefore, the term 1142Io can be dropped from (3.9). If 
the resulting inequality is applied with k = 0, we obtain the a priori inequality 

(3.10) 11111+1 ? C(|ILeA1111 + IIReA111+0) 
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The inequality (3.10) is crucial for our least squares error analysis. It is in- 
teresting to note that (3.10) contains, in particular, the usual shift inequal- 
ity for the system (1.1). Let [u, p] solve (1.1), and let w = curlu. Then 
_ = [u, k = 0, co, p]t satisfies Le/ = [f, 0, 0, 0]t and Re?/ = [0, 0]t. 

Hence (3.10) yields 

(3.11) llulli+i + llcurl ulli+i + IIPII+i <? Cllfllj. 

Since div u = 0, (3.1 1) yields the usual a priori inequality, 

IIYIll+2 + IIPII1+I < Cllfj11, 

for solutions of (1.1). 

4. ERROR ESTIMATES 

In this section we will discuss the numerical scheme defined by (2.1 1). Denote 
the bilinear form 

(4.1) a(U, V) = j LU * LV + h- JRU RV. 

Thus, (2.9) and (2.1 1) can be reformulated as follows: find U E V (defined by 
(2.6)) such that 

(4.2) a(U,V)=j . LV foranyVeV, 

and find Uh E Vjh (defined by (2.7)), such that 

(4.3) a(Uh Vh)=j (i) *LVh for anyVh E jrh 

By inspection, a is symmetric and a(U, U) > 0. Furthermore, if a(U, U) = 
0, from (3.10) we get U = 0. Hence, the matrix associated with the linear 
system (2.11) is positive definite. 

Combining (4.2), (4.3), we have 

(4.4) a(U- Uh, Vh) = 0 for any Vh E Vrh. 

To obtain an error estimate for our least squares method, we shall require an 
"inverse assumption" on the subspace Vh. Inverse assumptions are common 
in least squares analyses; see, for example, [2, 7]. The property we need is the 
existence of a constant C > 0 such that 

(4.5) IIRV I1/2,r < Ch I/2IIRhIIo, r for any Vh E 

Our error estimate is contained in the following theorem. 

Theorem 2. Suppose Vrh approximates optimally with respect to r and satisfies 
(4.5). Let [u, p]t be the solution of (1.1). Let w = curlu, U = [u, wo, p]t, 
and Uh E Vrh be the solution of (2.1). Then 

IU- UhII1 ? < Chrll UIIr+I. 

Proof. Using (3.10) with / = 1, (4.5), and (4.1), we have for any Vh E Vrh 

IIVhII2 ? C(ILYhII + IRYhII12,~ ? C(I LY~ 1 o + h||R V hI/2, r) 

- C( 110lO+ h - |R 16|Or) = C * a(V,V) 
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Applying this inequality to Uh _ Vh E Vh and using (4.4), we get 

hCUh_ VhII2 < Ca(Uh_ Vh Uh - Vh) 

=C(a(Uh -U, Uh V ) + a(U-Vh, Uh V)) 
= Ca(U-Vh, Uh _Vh) < ClIIU_VhIll IIlLh _ Vhil 

Hence, 11 Uh _ Vh 1I < CII U - Vh Iii. Using the optimal approximation property 
of Vh we choose Vh so that IU -VhIII < ChrIIUIIr+i . Then h|Uh -Vhlll < 
ChrllUIIr+i, and so 

IIU _EhIlll < ? IIU_Vhlll + I -Uh Vhlll < ChrII UIIr+l, 
which is the desired result. 0 
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